Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077089

RESUMO

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34554081

RESUMO

The definition of a genus has wide-ranging implications both in terms of binomial species names and also evolutionary relationships. In recent years, the definition of the genus Mycobacterium has been debated due to the proposed split of this genus into five new genera (Mycolicibacterium, Mycolicibacter, Mycolicibacillus, Mycobacteroides and an emended Mycobacterium). Since this group of species contains many important obligate and opportunistic pathogens, it is important that any renaming of species does not cause confusion in clinical treatment as outlined by the nomen periculosum rule (56a) of the Prokaryotic Code. In this study, we evaluated the proposed and original genus boundaries for the mycobacteria, to determine if the split into five genera was warranted. By combining multiple approaches for defining genus boundaries (16S rRNA gene similarity, amino acid identity index, average nucleotide identity, alignment fraction and percentage of conserved proteins) we show that the original genus Mycobacterium is strongly supported over the proposed five-way split. Thus, we propose that the original genus label be reapplied to all species within this group, with the proposed five genera potentially used as sub-genus complex names.


Assuntos
Ácidos Graxos , Mycobacterium , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Mycobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117054

RESUMO

The current opioid epidemic warrants a better understanding of genetic and environmental factors that contribute to opioid addiction. Here we report an increased prevalence of vitamin D (VitD) deficiency in patients diagnosed with opioid use disorder and an inverse and dose-dependent association of VitD levels with self-reported opioid use. We used multiple pharmacologic approaches and genetic mouse models and found that deficiencies in VitD signaling amplify exogenous opioid responses that are normalized upon restoration of VitD signaling. Similarly, physiologic endogenous opioid analgesia and reward responses triggered by ultraviolet (UV) radiation are repressed by VitD signaling, suggesting that a feedback loop exists whereby VitD deficiency produces increased UV/endorphin-seeking behavior until VitD levels are restored by cutaneous VitD synthesis. This feedback may carry the evolutionary advantage of maximizing VitD synthesis. However, unlike UV exposure, exogenous opioid use is not followed by VitD synthesis (and its opioid suppressive effects), contributing to maladaptive addictive behavior.


Assuntos
Endorfinas , Transtornos Relacionados ao Uso de Opioides , Deficiência de Vitamina D , Analgésicos Opioides/farmacologia , Animais , Humanos , Camundongos , Vitamina D/farmacologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
4.
Nature ; 586(7829): 417-423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999463

RESUMO

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Assuntos
Retroalimentação Fisiológica , Microglia/fisiologia , Inibição Neural , Neurônios/fisiologia , 5'-Nucleotidase/metabolismo , Potenciais de Ação , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Inibição Neural/genética , Receptor A1 de Adenosina/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Fatores de Tempo
5.
Neuron ; 106(6): 912-926.e5, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32304628

RESUMO

Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.


Assuntos
Transtorno Depressivo Maior/genética , Córtex Pré-Frontal/metabolismo , RNA Longo não Codificante/genética , Resiliência Psicológica , Estresse Psicológico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Comportamento Animal , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , RNA Longo não Codificante/metabolismo , RNA-Seq , Fatores Sexuais , Estresse Psicológico/metabolismo , Adulto Jovem
6.
Biol Psychiatry ; 88(2): 159-168, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169281

RESUMO

BACKGROUND: Most of our knowledge of the biological basis of major depressive disorder (MDD) is derived from studies of chronic stress models in rodents. While these models capture certain aspects of the behavioral and neuroendocrine features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown. METHODS: We systematically compared transcriptional signatures in two brain regions implicated in depression-medial prefrontal cortex and nucleus accumbens-of humans with MDD and of 3 chronic stress models in mice: chronic variable stress, adult social isolation, and chronic social defeat stress. We used differential expression analysis combined with weighted gene coexpression network analysis to create interspecies gene networks and assess the capacity of each stress paradigm to recapitulate the transcriptional organization of gene networks in human MDD. RESULTS: Our results show significant overlap between transcriptional alterations in medial prefrontal cortex and nucleus accumbens in human MDD and the 3 mouse chronic stress models, with each of the chronic stress paradigms capturing distinct aspects of MDD abnormalities. Chronic variable stress and adult social isolation better reproduce differentially expressed genes, while chronic social defeat stress and adult social isolation better reproduce gene networks characteristic of human MDD. We also identified several gene networks and their constituent genes that are most significantly associated with human MDD and mouse stress models. CONCLUSIONS: This study demonstrates the ability of 3 chronic stress models in mice to recapitulate distinct aspects of the broad molecular pathology of human MDD, with no one mouse model apparently better than another.


Assuntos
Transtorno Depressivo Maior , Animais , Encéfalo , Transtorno Depressivo Maior/genética , Modelos Animais de Doenças , Camundongos , Núcleo Accumbens , Córtex Pré-Frontal
7.
Nature ; 567(7749): 535-539, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867594

RESUMO

Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.


Assuntos
Regulação da Expressão Gênica , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Serotonina/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Proteínas de Ligação ao GTP/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Neurônios Serotoninérgicos/citologia , Transglutaminases/metabolismo
8.
Nat Neurosci ; 21(8): 1049-1060, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038282

RESUMO

The rapid elimination of dying neurons and nonfunctional synapses in the brain is carried out by microglia, the resident myeloid cells of the brain. Here we show that microglia clearance activity in the adult brain is regionally regulated and depends on the rate of neuronal attrition. Cerebellar, but not striatal or cortical, microglia exhibited high levels of basal clearance activity, which correlated with an elevated degree of cerebellar neuronal attrition. Exposing forebrain microglia to apoptotic cells activated gene-expression programs supporting clearance activity. We provide evidence that the polycomb repressive complex 2 (PRC2) epigenetically restricts the expression of genes that support clearance activity in striatal and cortical microglia. Loss of PRC2 leads to aberrant activation of a microglia clearance phenotype, which triggers changes in neuronal morphology and behavior. Our data highlight a key role of epigenetic mechanisms in preventing microglia-induced neuronal alterations that are frequently associated with neurodegenerative and psychiatric diseases.


Assuntos
Encéfalo/fisiologia , Epigênese Genética/fisiologia , Microglia/fisiologia , Animais , Apoptose/genética , Morte Celular/genética , Cerebelo/citologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/citologia , Neostriado/fisiologia , Neostriado/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Complexo Repressor Polycomb 2/genética , Convulsões/genética , Sinapses/fisiologia
9.
Biol Psychiatry ; 84(12): 867-880, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29861096

RESUMO

BACKGROUND: Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD). METHODS: We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context. RNA sequencing was conducted on six interconnected brain reward regions. Using pattern analysis of gene expression and factor analysis of behavior, we identified genes that are strongly associated with addiction-related behaviors and uniquely altered by a history of cocaine SA. We then identified potential upstream regulators of these genes. RESULTS: We focused on three patterns of gene expression that reflect responses to 1) acute cocaine, 2) context re-exposure, and 3) drug + context re-exposure. These patterns revealed region-specific regulation of gene expression. Further analysis revealed that each of these gene expression patterns correlated with an addiction index-a composite score of several addiction-like behaviors during cocaine SA-in a region-specific manner. Cyclic adenosine monophosphate response element binding protein and nuclear receptor families were identified as key upstream regulators of genes associated with such behaviors. CONCLUSIONS: This comprehensive picture of transcriptome-wide regulation in the brain's reward circuitry by cocaine SA and prolonged WD provides new insight into the molecular basis of cocaine addiction, which will guide future studies of the key molecular pathways involved.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma , Animais , Encéfalo/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Recompensa , Autoadministração , Análise de Sequência de RNA
11.
Nat Med ; 23(9): 1102-1111, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28825715

RESUMO

Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Estresse Psicológico/genética , Transcriptoma , Adulto , Idoso , Animais , Western Blotting , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Núcleo Accumbens/metabolismo , Técnicas de Patch-Clamp , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Análise de Sequência de RNA , Caracteres Sexuais , Fatores Sexuais
12.
Biol Psychiatry ; 82(11): 794-805, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577753

RESUMO

BACKGROUND: Exposure to drugs of abuse alters the epigenetic landscape of the brain's reward regions, such as the nucleus accumbens. We investigated how combinations of chromatin modifications affect genes that regulate responses to cocaine. We focused on Auts2, a gene linked to human evolution and cognitive disorders, which displays strong clustering of cocaine-induced chromatin modifications in this brain region. METHODS: We combined chromosome conformation capture, circularized chromosome conformation capture, and related approaches with behavioral paradigms relevant to cocaine phenotypes. Cell type-specific functions were assessed by fluorescence-activated cell sorting and viral-mediated overexpression in Cre-dependent mouse lines. RESULTS: We observed that Auts2 gene expression is increased by repeated cocaine administration specifically in D2-type medium spiny neurons in the nucleus accumbens, an effect seen in male but not female mice. Auts2 messenger RNA expression was also upregulated postmortem in the nucleus accumbens of male human cocaine addicts. We obtained evidence that chromosomal looping, bypassing 1524 kb of linear genome, connects Auts2 to the Caln1 gene locus under baseline conditions. This looping was disrupted after repeated cocaine exposure, resulting in increased expression of both genes in D2-type medium spiny neurons. Cocaine exposure reduces binding of CCCTC-binding factor, a chromosomal scaffolding protein, and increases histone and DNA methylation at the Auts-Caln1 loop base in the nucleus accumbens. Cell type-specific overexpression of Auts2 or Caln1 in D2-type medium spiny neurons demonstrated that both genes promote cocaine reward. CONCLUSIONS: These findings suggest that cocaine-induced alterations of neuronal three-dimensional genome organization destabilize higher order chromatin at specific loci that regulate responses to the drug.


Assuntos
Cromatina/efeitos dos fármacos , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Condicionamento Operante/efeitos dos fármacos , Proteínas do Citoesqueleto , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Molecular , Neuroblastoma/patologia , Proteínas Nucleares/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fatores de Transcrição , Adulto Jovem
13.
Nature ; 543(7644): 265-269, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28241141

RESUMO

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.


Assuntos
Acetilação , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Oncogenes/genética , Fatores de Elongação da Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Edição de Genes , Histonas/química , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 113(44): 12562-12567, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791098

RESUMO

Human major depressive disorder (MDD), along with related mood disorders, is among the world's greatest public health concerns; however, its pathophysiology remains poorly understood. Persistent changes in gene expression are known to promote physiological aberrations implicated in MDD. More recently, histone mechanisms affecting cell type- and regional-specific chromatin structures have also been shown to contribute to transcriptional programs related to depressive behaviors, as well as responses to antidepressants. Although much emphasis has been placed in recent years on roles for histone posttranslational modifications and chromatin-remodeling events in the etiology of MDD, it has become increasingly clear that replication-independent histone variants (e.g., H3.3), which differ in primary amino acid sequence from their canonical counterparts, similarly play critical roles in the regulation of activity-dependent neuronal transcription, synaptic connectivity, and behavioral plasticity. Here, we demonstrate a role for increased H3.3 dynamics in the nucleus accumbens (NAc)-a key limbic brain reward region-in the regulation of aberrant social stress-mediated gene expression and the precipitation of depressive-like behaviors in mice. We find that molecular blockade of these dynamics promotes resilience to chronic social stress and results in a partial renormalization of stress-associated transcriptional patterns in the NAc. In sum, our findings establish H3.3 dynamics as a critical, and previously undocumented, regulator of mood and suggest that future therapies aimed at modulating striatal histone dynamics may potentiate beneficial behavioral adaptations to negative emotional stimuli.


Assuntos
Transtorno Depressivo/fisiopatologia , Histonas/metabolismo , Núcleo Accumbens/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Idoso , Animais , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Núcleo Accumbens/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Psicológico/genética
15.
Neuropsychopharmacology ; 41(13): 3103-3113, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27485686

RESUMO

Lysine (K) methyltransferase 2a (Kmt2a) and other regulators of H3 lysine 4 methylation, a histone modification enriched at promoters and enhancers, are widely expressed throughout the brain, but molecular and cellular phenotypes in subcortical areas remain poorly explored. We report that Kmt2a conditional deletion in postnatal forebrain is associated with excessive nocturnal activity and with absent or blunted responses to stimulant and dopaminergic agonist drugs, in conjunction with near-complete loss of spike-timing-dependent long-term potentiation in medium spiny neurons (MSNs). Selective ablation of Kmt2a, but not the ortholog Kmt2b, in adult ventral striatum/nucleus accumbens neurons markedly increased anxiety scores in multiple behavioral paradigms. Striatal transcriptome sequencing in adult mutants identified 262 Kmt2a-sensitive genes, mostly downregulated in Kmt2a-deficient mice. Transcriptional repression includes the 5-Htr2a serotonin receptor, strongly associated with anxiety- and depression-related disorders in human and animal models. Consistent with the role of Kmt2a in promoting gene expression, the transcriptional regulators Bahcc1, Isl1, and Sp9 were downregulated and affected by H3K4 promoter hypomethylation. Therefore, Kmt2a regulates synaptic plasticity in striatal neurons and provides an epigenetic drug target for anxiety and dopamine-mediated behaviors.


Assuntos
Potenciais de Ação/genética , Ansiedade , Dopaminérgicos/farmacologia , Histona-Lisina N-Metiltransferase/deficiência , Proteína de Leucina Linfoide-Mieloide/deficiência , Plasticidade Neuronal/genética , Neurônios/fisiologia , Estriado Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
Mol Biol Evol ; 30(4): 906-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23275489

RESUMO

Cichlid fishes have evolved tremendous morphological and behavioral diversity in the waters of East Africa. Within each of the Great Lakes Tanganyika, Malawi, and Victoria, the phenomena of hybridization and retention of ancestral polymorphism explain allele sharing across species. Here, we explore the sharing of single nucleotide polymorphisms (SNPs) between the major East African cichlid assemblages. A set of approximately 200 genic and nongenic SNPs was ascertained in five Lake Malawi species and genotyped in a diverse collection of ~160 species from across Africa. We observed segregating polymorphism outside of the Malawi lineage for more than 50% of these loci; this holds similarly for genic versus nongenic SNPs, as well as for SNPs at putative CpG versus non-CpG sites. Bayesian and principal component analyses of genetic structure in the data demonstrate that the Lake Malawi endemic flock is not monophyletic and that river species have likely contributed significantly to Malawi genomes. Coalescent simulations support the hypothesis that river cichlids have transported polymorphism between lake assemblages. We observed strong genetic differentiation between Malawi lineages for approximately 8% of loci, with contributions from both genic and nongenic SNPs. Notably, more than half of these outlier loci between Malawi groups are polymorphic outside of the lake. Cichlid fishes have evolved diversity in Lake Malawi as new mutations combined with standing genetic variation shared across East Africa.


Assuntos
Ciclídeos/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , África , Animais , Teorema de Bayes , Loci Gênicos , Especiação Genética , Genótipo , Lagos , Modelos Genéticos , Filogenia , Filogeografia , Análise de Componente Principal , Rios , Seleção Genética , Análise de Sequência de DNA
17.
BMC Evol Biol ; 11: 120, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21554730

RESUMO

BACKGROUND: Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. RESULTS: We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. CONCLUSIONS: This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.


Assuntos
Ciclídeos/genética , Proteínas de Peixes/genética , Opsinas/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Alinhamento de Sequência , Regiões não Traduzidas
18.
Genome Biol Evol ; 3: 55-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21169229

RESUMO

MicroRNAs (miRNAs) are ancient, short noncoding RNA molecules that regulate the transcriptome through post-transcriptional mechanisms. miRNA riboregulation is involved in a diverse range of biological processes, and misregulation is implicated in disease. It is generally thought that miRNAs function to canalize cellular outputs, for instance as "fail-safe" repressors of gene misexpression. Genomic surveys in humans have revealed reduced genetic polymorphism and the signature of negative selection for both miRNAs themselves and the target sequences to which they are predicted to bind. We investigated the evolution of miRNAs and their binding sites across cichlid fishes from Lake Malawi (East Africa), where hundreds of diverse species have evolved in the last million years. Using low-coverage genome sequence data, we identified 100 cichlid miRNA genes with mature regions that are highly conserved in other animal species. We computationally predicted target sites on the 3'-untranslated regions (3'-UTRs) of cichlid genes to which miRNAs may bind and found that these sites possessed elevated single nucleotide polymorphism (SNP) densities. Furthermore, polymorphic sites in predicted miRNA targets showed higher minor allele frequencies on average and greater genetic differentiation between Malawi lineages when compared with a neutral expectation and nontarget 3'-UTR SNPs. Our data suggest that divergent selection on miRNA riboregulation may have contributed to the diversification of cichlid species and may similarly play a role in rapid phenotypic evolution of other natural systems.


Assuntos
Ciclídeos/genética , Evolução Molecular , Especiação Genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , África Oriental , Alelos , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Expressão Gênica , Perfilação da Expressão Gênica , Variação Genética , Mutação , Polimorfismo de Nucleotídeo Único , Interferência de RNA
19.
Proc Natl Acad Sci U S A ; 107(21): 9718-23, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20439726

RESUMO

Differences in brain region size among species are thought to arise late in development via adaptive control over neurogenesis, as cells of previously patterned compartments proliferate, die, and/or differentiate into neurons. Here we investigate comparative brain development in ecologically distinct cichlid fishes from Lake Malawi and demonstrate that brains vary among recently evolved lineages because of early patterning. Divergence among rock-dwellers and sand-dwellers in the relative size of the telencephalon versus the thalamus is correlated with gene expression variation in a regulatory circuit (composed of six3, fezf2, shh, irx1b, and wnt1) known from model organisms to specify anterior-posterior (AP) brain polarity and position the shh-positive signaling boundary zona limitans intrathalamica (ZLI) in the forebrain. To confirm that changes in this coexpression network are sufficient to produce the differences we observe, we manipulated WNT signaling in vivo by treating rock-dwelling cichlid embryos with temporally precise doses of LiCl. Chemically treated rock-dwellers develop gene expression patterns, ZLIs, and forebrains distinct from controls and untreated conspecifics, but strongly resembling those of sand-dwellers. Notably, endemic Malawi rock- and sand-dwelling lineages are alternately fixed for an SNP in irx1b, a mediator of WNT signaling required for proper thalamus and ZLI. Together, these natural experiments in neuroanatomy, development, and genomics suggest that evolutionary changes in AP patterning establish ecologically relevant differences in the elaboration of cichlid forebrain compartments. In general, variation in developmental patterning might lay the foundations on which neurogenesis erects diverse brain architectures.


Assuntos
Padronização Corporal , Encéfalo/embriologia , Perciformes/anatomia & histologia , Perciformes/genética , Animais , Evolução Biológica , Encéfalo/metabolismo , Ecossistema , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo
20.
Biol Lett ; 5(3): 405-8, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19324652

RESUMO

We analysed over 8 million base pairs of bacterial artificial chromosome-based sequence alignments of four Old World monkeys and the human genome. Our findings are as follows. (i) Genomic divergences among several Old World monkeys mirror those between well-studied hominoids. (ii) The X-chromosome evolves slower than autosomes, in accord with 'male-driven evolution'. However, the degree of male mutation bias is lower in Old World monkeys than in hominoids. (iii) Evolutionary rates vary significantly between lineages. The baboon branch shows a particularly slow molecular evolution. Thus, lineage-specific evolutionary rate variation is a common theme of primate genome evolution. (iv) In contrast to the overall pattern, mutations originating from DNA methylation exhibit little variation between lineages. Our study illustrates the potential of primates as a model system to investigate genome evolution, in particular to elucidate molecular mechanisms of substitution rate variation.


Assuntos
Cercopithecidae/genética , Evolução Molecular , Animais , Ilhas de CpG/genética , Variação Genética , Genômica , Humanos , Masculino , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...